A.492bit
B.738bit
C.123bi
D.82bit
假定输入图像的尺寸为63´63´16,卷积层包含32个7´7的过滤器,stride=1,如果希望采用“same卷积模式”,则padding为:A.1B.2C.3D.7
点击查看答案
10、卷积神经网络中,输入图片为RGB3个通道,每个通道大小为32x32,即输入大小为32x32x3,单个卷积核大小为5x5x3,卷积核个数为6,步长为1,无补边,则输出的大小为()。A.27x27x3B.14x14x3C.14x14D.27x27x6
在卷积神经网络计算中,已知输入特征层大小为32x32x64, 使用标准卷积计算,带偏置项,卷积核大小为3*3,输出特征层数目为64,请问卷积层的参数个数为?A.576B.36928C.640D.36864
现有一个两层的卷积神经网络,第一层是常规的卷积层,输入输出的通道数为3和64,卷积核大小为3×3;第二层是分组卷积层(group convolution layer),分为4组,输入输出通道数为64和32,卷积核大小为3×3。则该网络的参数个数为()
假设某卷积层的输入和输出特征图大小分别为63*63*16和31*31*64,卷积核大小是5*5,步长为2,那么Padding值为多少?A.1B.2C.3D.4
假设某卷积层的输入和输出特征图大小分别为63*63*6和31*31*12,卷积核大小是5*5,步长为2,那么Padding值为多少?A.4B.2C.1D.3
下列关于CNN的说法不正确的是()A.经过卷积运算,无法产生与输入相同大小的输出###SXB###B.CNN中的卷积运算,每个输出特性不用查看每个输入特征,而只需查看部分输入特征。###SXB###C.对图像用一个卷积核进行卷积运算,实际上是一个滤波的过程。每个卷积核都是一种特征提取方式,就像是一个筛子,将图像中符合条件的部分筛选出来。###SXB###D.0填充:用额外的“假”像素(通常值为0)填充边缘。这样,在滑动时的卷积核可以允许原始边缘像素位于卷积核的中心,同时延伸到边缘之外的假像素,从而产生与输入相同大小的输出。